News

on video Aerospike Hybrid Rocket Engine (3D printed)

 



has worked hard over the last year, crafting a variety of types of rocket and jet engine, primarily using 3D printed parts. Due to the weaknesses of plastic, all of which conflict with the general material requirements for an engine that gets hot, he has had less thrust and more meltdowns than he would have liked. Undeterred, he presses on, now with a hybrid rocket aerospike design. The goal? Actually generating some thrust for once!

The latest project makes the most of what [Integza] has learned. The aerospike nozzle is 3D printed, but out of a special thick ceramic-loaded resin, using a Bison 1000 DLP printer. This allowed [Integza] to print thicker ceramic parts which shrunk less when placed in a kiln, thus negating the cracking experienced with his earlier work. The new nozzle is paired with a steel rocket casing to help contain combustion gases, and the rocket fuel is 3D printed ASA plastic. 3D printing the fuel is particularly cool, as it allows for easy experimentation with grain shape to tune thrust profiles.

With the oxygen pumping, the new design produces some thrust, though [Integza] is yet to instrument the test platform to actually measure results. While the nozzles are still failing over a short period of time, the test burns were far less explosive – and far more propulsive – than his previous efforts. We look forward to further development, and hope [Integza’s] designs one day soar high into the sky. Video after the break


 



has worked hard over the last year, crafting a variety of types of rocket and jet engine, primarily using 3D printed parts. Due to the weaknesses of plastic, all of which conflict with the general material requirements for an engine that gets hot, he has had less thrust and more meltdowns than he would have liked. Undeterred, he presses on, now with a hybrid rocket aerospike design. The goal? Actually generating some thrust for once!

The latest project makes the most of what [Integza] has learned. The aerospike nozzle is 3D printed, but out of a special thick ceramic-loaded resin, using a Bison 1000 DLP printer. This allowed [Integza] to print thicker ceramic parts which shrunk less when placed in a kiln, thus negating the cracking experienced with his earlier work. The new nozzle is paired with a steel rocket casing to help contain combustion gases, and the rocket fuel is 3D printed ASA plastic. 3D printing the fuel is particularly cool, as it allows for easy experimentation with grain shape to tune thrust profiles.

With the oxygen pumping, the new design produces some thrust, though [Integza] is yet to instrument the test platform to actually measure results. While the nozzles are still failing over a short period of time, the test burns were far less explosive – and far more propulsive – than his previous efforts. We look forward to further development, and hope [Integza’s] designs one day soar high into the sky. Video after the break


 



has worked hard over the last year, crafting a variety of types of rocket and jet engine, primarily using 3D printed parts. Due to the weaknesses of plastic, all of which conflict with the general material requirements for an engine that gets hot, he has had less thrust and more meltdowns than he would have liked. Undeterred, he presses on, now with a hybrid rocket aerospike design. The goal? Actually generating some thrust for once!

The latest project makes the most of what [Integza] has learned. The aerospike nozzle is 3D printed, but out of a special thick ceramic-loaded resin, using a Bison 1000 DLP printer. This allowed [Integza] to print thicker ceramic parts which shrunk less when placed in a kiln, thus negating the cracking experienced with his earlier work. The new nozzle is paired with a steel rocket casing to help contain combustion gases, and the rocket fuel is 3D printed ASA plastic. 3D printing the fuel is particularly cool, as it allows for easy experimentation with grain shape to tune thrust profiles.

With the oxygen pumping, the new design produces some thrust, though [Integza] is yet to instrument the test platform to actually measure results. While the nozzles are still failing over a short period of time, the test burns were far less explosive – and far more propulsive – than his previous efforts. We look forward to further development, and hope [Integza’s] designs one day soar high into the sky. Video after the break


 



has worked hard over the last year, crafting a variety of types of rocket and jet engine, primarily using 3D printed parts. Due to the weaknesses of plastic, all of which conflict with the general material requirements for an engine that gets hot, he has had less thrust and more meltdowns than he would have liked. Undeterred, he presses on, now with a hybrid rocket aerospike design. The goal? Actually generating some thrust for once!

The latest project makes the most of what [Integza] has learned. The aerospike nozzle is 3D printed, but out of a special thick ceramic-loaded resin, using a Bison 1000 DLP printer. This allowed [Integza] to print thicker ceramic parts which shrunk less when placed in a kiln, thus negating the cracking experienced with his earlier work. The new nozzle is paired with a steel rocket casing to help contain combustion gases, and the rocket fuel is 3D printed ASA plastic. 3D printing the fuel is particularly cool, as it allows for easy experimentation with grain shape to tune thrust profiles.

With the oxygen pumping, the new design produces some thrust, though [Integza] is yet to instrument the test platform to actually measure results. While the nozzles are still failing over a short period of time, the test burns were far less explosive – and far more propulsive – than his previous efforts. We look forward to further development, and hope [Integza’s] designs one day soar high into the sky. Video after the break


No comments